弹药废料检查是回收弹药金属废料的过程中的重要步骤。大多数弹药由许多组件组成,包括盒子,底漆,粉末和弹丸。包含能量学的弹药废料被认为是潜在危险的,应在回收过程之前分离。手动检查每片废料都是乏味且耗时的。我们已经收集了一个弹药组件的数据集,目的是应用人工智能自动对安全和不安全的废料进行分类。首先,通过弹药的视觉和X射线图像手动创建两个培训数据集。其次,使用直方图均衡,平均,锐化,功率定律和高斯模糊的空间变换来增强X射线数据集,以补偿缺乏足够的训练数据。最后,应用代表性的Yolov4对象检测方法用于检测弹药组件并分别将废料片分别为安全和不安全的类。训练有素的模型针对看不见的数据进行了测试,以评估应用方法的性能。实验证明了使用深度学习的弹药组件检测和分类的可行性。数据集和预培训模型可在https://github.com/hadi-ghnd/scrap-classification上获得。
translated by 谷歌翻译
自动检测交通事故是交通监控系统中重要的新兴主题。如今,许多城市交叉路口都配备了与交通管理系统相关的监视摄像机。因此,计算机视觉技术可以是自动事故检测的可行工具。本文提出了一个新的高效框架,用于在交通监视应用的交叉点上进行事故检测。所提出的框架由三个层次步骤组成,包括基于最先进的Yolov4方法的有效和准确的对象检测,基于Kalman滤波器与匈牙利算法进行关联的对象跟踪以及通过轨迹冲突分析进行的事故检测。对象关联应用了新的成本函数,以适应对象跟踪步骤中的遮挡,重叠对象和形状变化。为了检测不同类型的轨迹冲突,包括车辆到车辆,车辆对乘车和车辆对自行车,对物体轨迹进行了分析。使用真实交通视频数据的实验结果显示,该方法在交通监视的实时应用中的可行性。尤其是,轨迹冲突,包括在城市十字路口发生的近乎事故和事故,以低的错误警报率和高检测率检测到。使用从YouTube收集的具有不同照明条件的视频序列评估所提出框架的鲁棒性。该数据集可在以下网址公开获取:http://github.com/hadi-ghnd/accidentdetection。
translated by 谷歌翻译
Automated Program Repair (APR) is defined as the process of fixing a bug/defect in the source code, by an automated tool. APR tools have recently experienced promising results by leveraging state-of-the-art Neural Language Processing (NLP) techniques. APR tools such as TFix and CodeXGLUE combine text-to-text transformers with software-specific techniques are outperforming alternatives, these days. However, in most APR studies the train and test sets are chosen from the same set of projects. In reality, however, APR models are meant to be generalizable to new and different projects. Therefore, there is a potential threat that reported APR models with high effectiveness perform poorly when the characteristics of the new project or its bugs are different than the training set's(Domain Shift). In this study, we first define and measure the domain shift problem in automated program repair. Then, we then propose a domain adaptation framework that can adapt an APR model for a given target project. We conduct an empirical study with three domain adaptation methods FullFineTuning, TuningWithLightWeightAdapterLayers, and CurriculumLearning using two state-of-the-art domain adaptation tools (TFix and CodeXGLUE) and two APR models on 611 bugs from 19 projects. The results show that our proposed framework can improve the effectiveness of TFix by 13.05% and CodeXGLUE by 23.4%. Another contribution of this study is the proposal of a data synthesis method to address the lack of labelled data in APR. We leverage transformers to create a bug generator model. We use the generated synthetic data to domain adapt TFix and CodeXGLUE on the projects with no data (Zero-shot learning), which results in an average improvement of 5.76% and 24.42% for TFix and CodeXGLUE, respectively.
translated by 谷歌翻译
Numerous models have tried to effectively embed knowledge graphs in low dimensions. Among the state-of-the-art methods, Graph Neural Network (GNN) models provide structure-aware representations of knowledge graphs. However, they often utilize the information of relations and their interactions with entities inefficiently. Moreover, most state-of-the-art knowledge graph embedding models suffer from scalability issues because of assigning high-dimensional embeddings to entities and relations. To address the above limitations, we propose a scalable general knowledge graph encoder that adaptively involves a powerful tensor decomposition method in the aggregation function of RGCN, a well-known relational GNN model. Specifically, the parameters of a low-rank core projection tensor, used to transform neighborhood entities in the encoder, are shared across relations to benefit from multi-task learning and incorporate relations information effectively. Besides, we propose a low-rank estimation of the core tensor using CP decomposition to compress the model, which is also applicable, as a regularization method, to other similar linear models. We evaluated our model on knowledge graph completion as a common downstream task. We train our model for using a new loss function based on contrastive learning, which relieves the training limitation of the 1-N method on huge graphs. We improved RGCN performance on FB15-237 by 0.42% with considerably lower dimensionality of embeddings.
translated by 谷歌翻译
Building an accurate model of travel behaviour based on individuals' characteristics and built environment attributes is of importance for policy-making and transportation planning. Recent experiments with big data and Machine Learning (ML) algorithms toward a better travel behaviour analysis have mainly overlooked socially disadvantaged groups. Accordingly, in this study, we explore the travel behaviour responses of low-income individuals to transit investments in the Greater Toronto and Hamilton Area, Canada, using statistical and ML models. We first investigate how the model choice affects the prediction of transit use by the low-income group. This step includes comparing the predictive performance of traditional and ML algorithms and then evaluating a transit investment policy by contrasting the predicted activities and the spatial distribution of transit trips generated by vulnerable households after improving accessibility. We also empirically investigate the proposed transit investment by each algorithm and compare it with the city of Brampton's future transportation plan. While, unsurprisingly, the ML algorithms outperform classical models, there are still doubts about using them due to interpretability concerns. Hence, we adopt recent local and global model-agnostic interpretation tools to interpret how the model arrives at its predictions. Our findings reveal the great potential of ML algorithms for enhanced travel behaviour predictions for low-income strata without considerably sacrificing interpretability.
translated by 谷歌翻译
In a spoofing attack, an attacker impersonates a legitimate user to access or tamper with data intended for or produced by the legitimate user. In wireless communication systems, these attacks may be detected by relying on features of the channel and transmitter radios. In this context, a popular approach is to exploit the dependence of the received signal strength (RSS) at multiple receivers or access points with respect to the spatial location of the transmitter. Existing schemes rely on long-term estimates, which makes it difficult to distinguish spoofing from movement of a legitimate user. This limitation is here addressed by means of a deep neural network that implicitly learns the distribution of pairs of short-term RSS vector estimates. The adopted network architecture imposes the invariance to permutations of the input (commutativity) that the decision problem exhibits. The merits of the proposed algorithm are corroborated on a data set that we collected.
translated by 谷歌翻译
Dexterous and autonomous robots should be capable of executing elaborated dynamical motions skillfully. Learning techniques may be leveraged to build models of such dynamic skills. To accomplish this, the learning model needs to encode a stable vector field that resembles the desired motion dynamics. This is challenging as the robot state does not evolve on a Euclidean space, and therefore the stability guarantees and vector field encoding need to account for the geometry arising from, for example, the orientation representation. To tackle this problem, we propose learning Riemannian stable dynamical systems (RSDS) from demonstrations, allowing us to account for different geometric constraints resulting from the dynamical system state representation. Our approach provides Lyapunov-stability guarantees on Riemannian manifolds that are enforced on the desired motion dynamics via diffeomorphisms built on neural manifold ODEs. We show that our Riemannian approach makes it possible to learn stable dynamical systems displaying complicated vector fields on both illustrative examples and real-world manipulation tasks, where Euclidean approximations fail.
translated by 谷歌翻译
In this paper, we increase the availability and integration of devices in the learning process to enhance the convergence of federated learning (FL) models. To address the issue of having all the data in one location, federated learning, which maintains the ability to learn over decentralized data sets, combines privacy and technology. Until the model converges, the server combines the updated weights obtained from each dataset over a number of rounds. The majority of the literature suggested client selection techniques to accelerate convergence and boost accuracy. However, none of the existing proposals have focused on the flexibility to deploy and select clients as needed, wherever and whenever that may be. Due to the extremely dynamic surroundings, some devices are actually not available to serve as clients in FL, which affects the availability of data for learning and the applicability of the existing solution for client selection. In this paper, we address the aforementioned limitations by introducing an On-Demand-FL, a client deployment approach for FL, offering more volume and heterogeneity of data in the learning process. We make use of the containerization technology such as Docker to build efficient environments using IoT and mobile devices serving as volunteers. Furthermore, Kubernetes is used for orchestration. The Genetic algorithm (GA) is used to solve the multi-objective optimization problem due to its evolutionary strategy. The performed experiments using the Mobile Data Challenge (MDC) dataset and the Localfed framework illustrate the relevance of the proposed approach and the efficiency of the on-the-fly deployment of clients whenever and wherever needed with less discarded rounds and more available data.
translated by 谷歌翻译
Channel Attention reigns supreme as an effective technique in the field of computer vision. However, the proposed channel attention by SENet suffers from information loss in feature learning caused by the use of Global Average Pooling (GAP) to represent channels as scalars. Thus, designing effective channel attention mechanisms requires finding a solution to enhance features preservation in modeling channel inter-dependencies. In this work, we utilize Wavelet transform compression as a solution to the channel representation problem. We first test wavelet transform as an Auto-Encoder model equipped with conventional channel attention module. Next, we test wavelet transform as a standalone channel compression method. We prove that global average pooling is equivalent to the recursive approximate Haar wavelet transform. With this proof, we generalize channel attention using Wavelet compression and name it WaveNet. Implementation of our method can be embedded within existing channel attention methods with a couple of lines of code. We test our proposed method using ImageNet dataset for image classification task. Our method outperforms the baseline SENet, and achieves the state-of-the-art results. Our code implementation is publicly available at https://github.com/hady1011/WaveNet-C.
translated by 谷歌翻译
准确的交通预测对于智能运输系统至关重要。尽管许多深度学习模型已经达到了最新的1小时交通预测,但长期交通预测跨越多小时仍然是一个重大挑战。此外,大多数现有的深度学习流量预测模型都是黑匣子,提出了与解释性和解释性有关的其他挑战。我们开发了图形金字塔自动构造(X-GPA),这是一种基于注意力的空间 - 速率图神经网络,使用了新型金字塔自相关注意机制。它可以从图表上的长时间序列中学习,并提高长期流量预测准确性。与几种最先进的方法相比,我们的模型可以实现高达35%的长期流量预测准确性。 X-GPA模型的基于注意力的分数提供了基于交通动态的空间和时间解释,这些解释会改变正常与高峰时段的流量以及工作日与周末流量的变化。
translated by 谷歌翻译